This documentation is automatically generated by online-judge-tools/verification-helper
#include "src/real-geometry/circle-lib/tangent-cp.hpp"
#pragma once
#include "src/real-geometry/class/circle.hpp"
#include "src/real-geometry/class/point.hpp"
#include "src/real-geometry/cross-point/cross-point-cc.hpp"
#include <complex>
#include <cmath>
namespace geometry {
template< typename R >
points<R> tangent_cp(const circle<R> &c, const point<R> &p) {
circle<R> t{p, std::sqrt(std::norm(c.o - p) - std::norm(c.r))};
return cross_point_cc(c, t);
}
}
#line 2 "src/real-geometry/circle-lib/tangent-cp.hpp"
#line 2 "src/real-geometry/class/circle.hpp"
#line 2 "src/real-geometry/class/point.hpp"
#line 2 "src/real-geometry/class/vector.hpp"
#include <complex>
#include <iostream>
namespace geometry {
template< typename R >
class vec2d : public std::complex< R > {
using complex = std::complex< R >;
public:
using complex::complex;
vec2d(const complex &c): complex::complex(c) {}
const R x() const { return this->real(); }
const R y() const { return this->imag(); }
friend vec2d operator*(const vec2d &v, const R &k) {
return vec2d(v.x() * k, v.y() * k);
}
friend vec2d operator*(const R &k, const vec2d &v) {
return vec2d(v.x() * k, v.y() * k);
}
friend std::istream &operator>>(std::istream &is, vec2d &v) {
R x, y;
is >> x >> y;
v = vec2d(x, y);
return is;
}
};
}
#line 4 "src/real-geometry/class/point.hpp"
#include <vector>
namespace geometry {
template< typename R >
using point = vec2d<R>;
template< typename R >
using points = std::vector< point< R > >;
}
#line 4 "src/real-geometry/class/circle.hpp"
#line 6 "src/real-geometry/class/circle.hpp"
// circle
namespace geometry {
template< typename R >
class circle {
public:
point<R> o;
R r;
circle() = default;
circle(point<R> o, R r) : o(o), r(r) {}
const point<R> center() const {
return o;
}
const R radius() const {
return r;
}
};
template< typename R >
using circles = std::vector< circle<R> >;
}
#line 2 "src/real-geometry/cross-point/cross-point-cc.hpp"
#line 2 "src/real-geometry/utility/equals/vector.hpp"
#line 2 "src/real-geometry/utility/equals/real-number.hpp"
#line 2 "src/real-geometry/utility/sign.hpp"
#line 2 "src/real-geometry/common/const/eps.hpp"
#line 2 "src/real-geometry/common/float-alias.hpp"
namespace geometry {
using f80 = long double;
using f64 = double;
}
#line 4 "src/real-geometry/common/const/eps.hpp"
namespace geometry {
inline static f80 &eps() {
static f80 EPS = 1e-10;
return EPS;
}
void set_eps(f80 EPS) {
eps() = EPS;
}
}
#line 2 "src/real-geometry/numbers/sign.hpp"
#line 2 "src/real-geometry/common/int-alias.hpp"
namespace geometry {
using i32 = int;
using i64 = long long;
}
#line 4 "src/real-geometry/numbers/sign.hpp"
namespace geometry::number::sign {
constexpr i32 PLUS = +1;
constexpr i32 ZERO = 0;
constexpr i32 MINUS = -1;
}
#line 5 "src/real-geometry/utility/sign.hpp"
namespace geometry {
using namespace geometry::number::sign;
template< typename R >
inline int sign(R r) {
if (r < -eps()) return MINUS;
if (r > +eps()) return PLUS;
return ZERO;
}
}
#line 4 "src/real-geometry/utility/equals/real-number.hpp"
namespace geometry {
template< typename R >
bool equals(R a, R b) {
return sign(a - b) == 0;
}
}
#line 5 "src/real-geometry/utility/equals/vector.hpp"
namespace geometry {
template< typename R >
bool equals(const vec2d<R> &a, const vec2d<R> &b) {
return equals(a.x(), b.x()) and equals(a.y(), b.y());
}
}
#line 7 "src/real-geometry/cross-point/cross-point-cc.hpp"
#line 9 "src/real-geometry/cross-point/cross-point-cc.hpp"
#include <cmath>
namespace geometry {
template< typename R >
points<R> cross_point_cc(const circle<R> &a, const circle<R> &b) {
R d = std::abs(a.o - b.o), r = a.r + b.r;
if (sign(d - r) > 0 or sign(d + a.r - b.r) < 0) return {};
R s = std::acos( (std::norm(a.r) - std::norm(b.r) + std::norm(d)) / (2 * a.r * d) );
R t = std::arg(b.o - a.o);
point<R> p{a.o + std::polar(a.r, t + s)};
point<R> q{a.o + std::polar(a.r, t - s)};
if (equals(p, q)) return {p};
return {p, q};
}
}
#line 6 "src/real-geometry/circle-lib/tangent-cp.hpp"
#line 9 "src/real-geometry/circle-lib/tangent-cp.hpp"
namespace geometry {
template< typename R >
points<R> tangent_cp(const circle<R> &c, const point<R> &p) {
circle<R> t{p, std::sqrt(std::norm(c.o - p) - std::norm(c.r))};
return cross_point_cc(c, t);
}
}