This documentation is automatically generated by online-judge-tools/verification-helper
#include "src/real-geometry/convex/convex-diameter.hpp"
#pragma once
#include "src/real-geometry/class/polygon.hpp"
#include "src/real-geometry/compare/compare-x.hpp"
#include "src/real-geometry/common/size-alias.hpp"
#include "src/real-geometry/utility/sign.hpp"
#include "src/real-geometry/operation/cross-product.hpp"
#include "src/real-geometry/utility/next-idx.hpp"
#include <complex>
#include <algorithm>
namespace geometry {
template< typename R >
R convex_diameter(const polygon<R> &poly) {
usize n = poly.size();
if (n == 2) return std::abs(poly[0] - poly[1]);
usize i = 0, j = 0;
for (usize k = 0; k < n; k++) {
if ( compare_x(poly[i], poly[k])) i = k;
if (not compare_x(poly[j], poly[k])) j = k;
}
R res{0};
usize s = i, t = j;
while (i != t or j != s) {
res = std::max(res, std::abs(poly[i] - poly[j]));
auto u = poly[next_idx(i, n)] - poly[i];
auto v = poly[next_idx(j, n)] - poly[j];
if (sign(cross_product<R>(u, v)) == -1) {
i = next_idx(i, n);
} else {
j = next_idx(j, n);
}
}
return res;
}
}
#line 2 "src/real-geometry/convex/convex-diameter.hpp"
#line 2 "src/real-geometry/class/polygon.hpp"
#line 2 "src/real-geometry/class/point.hpp"
#line 2 "src/real-geometry/class/vector.hpp"
#include <complex>
#include <iostream>
namespace geometry {
template< typename R >
class vec2d : public std::complex< R > {
using complex = std::complex< R >;
public:
using complex::complex;
vec2d(const complex &c): complex::complex(c) {}
const R x() const { return this->real(); }
const R y() const { return this->imag(); }
friend vec2d operator*(const vec2d &v, const R &k) {
return vec2d(v.x() * k, v.y() * k);
}
friend vec2d operator*(const R &k, const vec2d &v) {
return vec2d(v.x() * k, v.y() * k);
}
friend std::istream &operator>>(std::istream &is, vec2d &v) {
R x, y;
is >> x >> y;
v = vec2d(x, y);
return is;
}
};
}
#line 4 "src/real-geometry/class/point.hpp"
#include <vector>
namespace geometry {
template< typename R >
using point = vec2d<R>;
template< typename R >
using points = std::vector< point< R > >;
}
#line 4 "src/real-geometry/class/polygon.hpp"
#line 6 "src/real-geometry/class/polygon.hpp"
namespace geometry {
template< typename R >
using polygon = std::vector< point<R> >;
template< typename R >
using polygons = std::vector< polygon<R> >;
}
#line 2 "src/real-geometry/compare/compare-x.hpp"
#line 2 "src/real-geometry/utility/equals/real-number.hpp"
#line 2 "src/real-geometry/utility/sign.hpp"
#line 2 "src/real-geometry/common/const/eps.hpp"
#line 2 "src/real-geometry/common/float-alias.hpp"
namespace geometry {
using f80 = long double;
using f64 = double;
}
#line 4 "src/real-geometry/common/const/eps.hpp"
namespace geometry {
inline static f80 &eps() {
static f80 EPS = 1e-10;
return EPS;
}
void set_eps(f80 EPS) {
eps() = EPS;
}
}
#line 2 "src/real-geometry/numbers/sign.hpp"
#line 2 "src/real-geometry/common/int-alias.hpp"
namespace geometry {
using i32 = int;
using i64 = long long;
}
#line 4 "src/real-geometry/numbers/sign.hpp"
namespace geometry::number::sign {
constexpr i32 PLUS = +1;
constexpr i32 ZERO = 0;
constexpr i32 MINUS = -1;
}
#line 5 "src/real-geometry/utility/sign.hpp"
namespace geometry {
using namespace geometry::number::sign;
template< typename R >
inline int sign(R r) {
if (r < -eps()) return MINUS;
if (r > +eps()) return PLUS;
return ZERO;
}
}
#line 4 "src/real-geometry/utility/equals/real-number.hpp"
namespace geometry {
template< typename R >
bool equals(R a, R b) {
return sign(a - b) == 0;
}
}
#line 5 "src/real-geometry/compare/compare-x.hpp"
namespace geometry {
template< typename R >
bool compare_x(const point<R> &a, const point<R> &b) {
return not equals(a.x(), b.x()) ? a.x() < b.x() : a.y() < b.y();
}
}
#line 2 "src/real-geometry/common/size-alias.hpp"
#include <cstddef>
namespace geometry {
using isize = std::ptrdiff_t;
using usize = std::size_t;
}
#line 2 "src/real-geometry/operation/cross-product.hpp"
#line 4 "src/real-geometry/operation/cross-product.hpp"
namespace geometry {
template< typename R >
R cross_product(const vec2d<R> &a, const vec2d<R> &b) {
return a.x() * b.y() - a.y() * b.x();
}
}
#line 2 "src/real-geometry/utility/next-idx.hpp"
#line 4 "src/real-geometry/utility/next-idx.hpp"
namespace geometry {
inline usize next_idx(usize idx, usize size) {
return idx + 1 == size ? 0 : idx + 1;
}
}
#line 9 "src/real-geometry/convex/convex-diameter.hpp"
#line 11 "src/real-geometry/convex/convex-diameter.hpp"
#include <algorithm>
namespace geometry {
template< typename R >
R convex_diameter(const polygon<R> &poly) {
usize n = poly.size();
if (n == 2) return std::abs(poly[0] - poly[1]);
usize i = 0, j = 0;
for (usize k = 0; k < n; k++) {
if ( compare_x(poly[i], poly[k])) i = k;
if (not compare_x(poly[j], poly[k])) j = k;
}
R res{0};
usize s = i, t = j;
while (i != t or j != s) {
res = std::max(res, std::abs(poly[i] - poly[j]));
auto u = poly[next_idx(i, n)] - poly[i];
auto v = poly[next_idx(j, n)] - poly[j];
if (sign(cross_product<R>(u, v)) == -1) {
i = next_idx(i, n);
} else {
j = next_idx(j, n);
}
}
return res;
}
}