This documentation is automatically generated by online-judge-tools/verification-helper
#include "src/real-geometry/point-cloud/convex-hull-with-index.hpp"
#pragma once
#include "src/real-geometry/common/size-alias.hpp"
#include "src/real-geometry/class/point.hpp"
#include "src/real-geometry/class/polygon.hpp"
#include "src/real-geometry/compare/compare-x.hpp"
#include "src/real-geometry/operation/cross-product.hpp"
#include <algorithm>
#include <numeric>
#include <tuple>
#include <utility>
#include <vector>
namespace geometry {
template< typename R >
std::pair< polygon<R>, std::vector< usize > > convex_hull_with_index(const points<R> &pts) {
usize n = pts.size();
if (n <= 2) {
std::vector< usize > idxs(n);
std::iota(idxs.begin(), idxs.end(), 0);
return {pts, idxs};
}
std::vector< std::pair< point<R>, usize > > ps;
ps.reserve(n);
for (usize i = 0; i < n; i++) {
ps.emplace_back(pts[i], i);
}
auto cmp = [](const std::pair<point<R>, usize> &a, const std::pair<point<R>, usize> &b) {
return compare_x(a.first, b.first);
};
std::sort(ps.begin(), ps.end(), cmp);
std::vector< usize > idxs(2 * n);
polygon<R> poly(2 * n);
usize k = 0, i = 0;
auto check = [&](usize i) {
return sign(cross_product<R>(poly[k - 1] - poly[k - 2], ps[i].first - poly[k - 1])) == -1;
};
while (i < n) {
while (k >= 2 and check(i)) k--;
std::tie(poly[k], idxs[k]) = ps[i];
k++; i++;
}
i = n - 2;
usize t = k + 1;
while (true) {
while (k >= t and check(i)) k--;
std::tie(poly[k], idxs[k]) = ps[i];
k++;
if (not i) break;
i--;
}
poly.resize(k - 1);
idxs.resize(k - 1);
return {poly, idxs};
}
}
#line 2 "src/real-geometry/point-cloud/convex-hull-with-index.hpp"
#line 2 "src/real-geometry/common/size-alias.hpp"
#include <cstddef>
namespace geometry {
using isize = std::ptrdiff_t;
using usize = std::size_t;
}
#line 2 "src/real-geometry/class/point.hpp"
#line 2 "src/real-geometry/class/vector.hpp"
#include <complex>
#include <iostream>
namespace geometry {
template< typename R >
class vec2d : public std::complex< R > {
using complex = std::complex< R >;
public:
using complex::complex;
vec2d(const complex &c): complex::complex(c) {}
const R x() const { return this->real(); }
const R y() const { return this->imag(); }
friend vec2d operator*(const vec2d &v, const R &k) {
return vec2d(v.x() * k, v.y() * k);
}
friend vec2d operator*(const R &k, const vec2d &v) {
return vec2d(v.x() * k, v.y() * k);
}
friend std::istream &operator>>(std::istream &is, vec2d &v) {
R x, y;
is >> x >> y;
v = vec2d(x, y);
return is;
}
};
}
#line 4 "src/real-geometry/class/point.hpp"
#include <vector>
namespace geometry {
template< typename R >
using point = vec2d<R>;
template< typename R >
using points = std::vector< point< R > >;
}
#line 2 "src/real-geometry/class/polygon.hpp"
#line 4 "src/real-geometry/class/polygon.hpp"
#line 6 "src/real-geometry/class/polygon.hpp"
namespace geometry {
template< typename R >
using polygon = std::vector< point<R> >;
template< typename R >
using polygons = std::vector< polygon<R> >;
}
#line 2 "src/real-geometry/compare/compare-x.hpp"
#line 2 "src/real-geometry/utility/equals/real-number.hpp"
#line 2 "src/real-geometry/utility/sign.hpp"
#line 2 "src/real-geometry/common/const/eps.hpp"
#line 2 "src/real-geometry/common/float-alias.hpp"
namespace geometry {
using f80 = long double;
using f64 = double;
}
#line 4 "src/real-geometry/common/const/eps.hpp"
namespace geometry {
inline static f80 &eps() {
static f80 EPS = 1e-10;
return EPS;
}
void set_eps(f80 EPS) {
eps() = EPS;
}
}
#line 2 "src/real-geometry/numbers/sign.hpp"
#line 2 "src/real-geometry/common/int-alias.hpp"
namespace geometry {
using i32 = int;
using i64 = long long;
}
#line 4 "src/real-geometry/numbers/sign.hpp"
namespace geometry::number::sign {
constexpr i32 PLUS = +1;
constexpr i32 ZERO = 0;
constexpr i32 MINUS = -1;
}
#line 5 "src/real-geometry/utility/sign.hpp"
namespace geometry {
using namespace geometry::number::sign;
template< typename R >
inline int sign(R r) {
if (r < -eps()) return MINUS;
if (r > +eps()) return PLUS;
return ZERO;
}
}
#line 4 "src/real-geometry/utility/equals/real-number.hpp"
namespace geometry {
template< typename R >
bool equals(R a, R b) {
return sign(a - b) == 0;
}
}
#line 5 "src/real-geometry/compare/compare-x.hpp"
namespace geometry {
template< typename R >
bool compare_x(const point<R> &a, const point<R> &b) {
return not equals(a.x(), b.x()) ? a.x() < b.x() : a.y() < b.y();
}
}
#line 2 "src/real-geometry/operation/cross-product.hpp"
#line 4 "src/real-geometry/operation/cross-product.hpp"
namespace geometry {
template< typename R >
R cross_product(const vec2d<R> &a, const vec2d<R> &b) {
return a.x() * b.y() - a.y() * b.x();
}
}
#line 8 "src/real-geometry/point-cloud/convex-hull-with-index.hpp"
#include <algorithm>
#include <numeric>
#include <tuple>
#include <utility>
#line 14 "src/real-geometry/point-cloud/convex-hull-with-index.hpp"
namespace geometry {
template< typename R >
std::pair< polygon<R>, std::vector< usize > > convex_hull_with_index(const points<R> &pts) {
usize n = pts.size();
if (n <= 2) {
std::vector< usize > idxs(n);
std::iota(idxs.begin(), idxs.end(), 0);
return {pts, idxs};
}
std::vector< std::pair< point<R>, usize > > ps;
ps.reserve(n);
for (usize i = 0; i < n; i++) {
ps.emplace_back(pts[i], i);
}
auto cmp = [](const std::pair<point<R>, usize> &a, const std::pair<point<R>, usize> &b) {
return compare_x(a.first, b.first);
};
std::sort(ps.begin(), ps.end(), cmp);
std::vector< usize > idxs(2 * n);
polygon<R> poly(2 * n);
usize k = 0, i = 0;
auto check = [&](usize i) {
return sign(cross_product<R>(poly[k - 1] - poly[k - 2], ps[i].first - poly[k - 1])) == -1;
};
while (i < n) {
while (k >= 2 and check(i)) k--;
std::tie(poly[k], idxs[k]) = ps[i];
k++; i++;
}
i = n - 2;
usize t = k + 1;
while (true) {
while (k >= t and check(i)) k--;
std::tie(poly[k], idxs[k]) = ps[i];
k++;
if (not i) break;
i--;
}
poly.resize(k - 1);
idxs.resize(k - 1);
return {poly, idxs};
}
}