This documentation is automatically generated by online-judge-tools/verification-helper
// verification-helper: PROBLEM https://onlinejudge.u-aizu.ac.jp/courses/library/4/CGL/2/CGL_2_C
// verification-helper: ERROR 0.00000001
#include "src/real-geometry/class/line.hpp"
#include "src/real-geometry/cross-point/cross-point-ll.hpp"
#include "src/real-geometry/utility/io-set.hpp"
#include <iostream>
int main() {
using R = long double;
int q;
std::cin >> q;
while (q--) {
geometry::line<R> l1, l2;
std::cin >> l1.a >> l1.b >> l2.a >> l2.b;
auto ans = cross_point_ll(l1, l2);
std::cout << ans.x() << " " << ans.y() << std::endl;
}
}
#line 1 "test/aoj/cgl/2_C.test.cpp"
// verification-helper: PROBLEM https://onlinejudge.u-aizu.ac.jp/courses/library/4/CGL/2/CGL_2_C
// verification-helper: ERROR 0.00000001
#line 2 "src/real-geometry/class/line.hpp"
#line 2 "src/real-geometry/class/point.hpp"
#line 2 "src/real-geometry/class/vector.hpp"
#include <complex>
#include <iostream>
namespace geometry {
template< typename R >
class vec2d : public std::complex< R > {
using complex = std::complex< R >;
public:
using complex::complex;
vec2d(const complex &c): complex::complex(c) {}
const R x() const { return this->real(); }
const R y() const { return this->imag(); }
friend vec2d operator*(const vec2d &v, const R &k) {
return vec2d(v.x() * k, v.y() * k);
}
friend vec2d operator*(const R &k, const vec2d &v) {
return vec2d(v.x() * k, v.y() * k);
}
friend std::istream &operator>>(std::istream &is, vec2d &v) {
R x, y;
is >> x >> y;
v = vec2d(x, y);
return is;
}
};
}
#line 4 "src/real-geometry/class/point.hpp"
#include <vector>
namespace geometry {
template< typename R >
using point = vec2d<R>;
template< typename R >
using points = std::vector< point< R > >;
}
#line 2 "src/real-geometry/utility/equals/vector.hpp"
#line 2 "src/real-geometry/utility/equals/real-number.hpp"
#line 2 "src/real-geometry/utility/sign.hpp"
#line 2 "src/real-geometry/common/const/eps.hpp"
#line 2 "src/real-geometry/common/float-alias.hpp"
namespace geometry {
using f80 = long double;
using f64 = double;
}
#line 4 "src/real-geometry/common/const/eps.hpp"
namespace geometry {
inline static f80 &eps() {
static f80 EPS = 1e-10;
return EPS;
}
void set_eps(f80 EPS) {
eps() = EPS;
}
}
#line 2 "src/real-geometry/numbers/sign.hpp"
#line 2 "src/real-geometry/common/int-alias.hpp"
namespace geometry {
using i32 = int;
using i64 = long long;
}
#line 4 "src/real-geometry/numbers/sign.hpp"
namespace geometry::number::sign {
constexpr i32 PLUS = +1;
constexpr i32 ZERO = 0;
constexpr i32 MINUS = -1;
}
#line 5 "src/real-geometry/utility/sign.hpp"
namespace geometry {
using namespace geometry::number::sign;
template< typename R >
inline int sign(R r) {
if (r < -eps()) return MINUS;
if (r > +eps()) return PLUS;
return ZERO;
}
}
#line 4 "src/real-geometry/utility/equals/real-number.hpp"
namespace geometry {
template< typename R >
bool equals(R a, R b) {
return sign(a - b) == 0;
}
}
#line 5 "src/real-geometry/utility/equals/vector.hpp"
namespace geometry {
template< typename R >
bool equals(const vec2d<R> &a, const vec2d<R> &b) {
return equals(a.x(), b.x()) and equals(a.y(), b.y());
}
}
#line 5 "src/real-geometry/class/line.hpp"
#include <cassert>
#line 8 "src/real-geometry/class/line.hpp"
namespace geometry {
template< typename R >
class line {
using P = point<R>;
public:
P a, b;
line() = default;
line(P a, P b) : a(a), b(b) {
assert(not equals(a, b));
}
};
template< typename R >
using lines = std::vector< line<R> >;
}
#line 2 "src/real-geometry/cross-point/cross-point-ll.hpp"
#line 2 "src/real-geometry/operation/cross-product.hpp"
#line 4 "src/real-geometry/operation/cross-product.hpp"
namespace geometry {
template< typename R >
R cross_product(const vec2d<R> &a, const vec2d<R> &b) {
return a.x() * b.y() - a.y() * b.x();
}
}
#line 6 "src/real-geometry/cross-point/cross-point-ll.hpp"
namespace geometry {
template< typename R >
point<R> cross_point_ll(const line<R> &l1, const line<R> &l2) {
R a = cross_product<R>(l1.b - l1.a, l2.b - l2.a);
R b = cross_product<R>(l1.b - l1.a, l1.b - l2.a);
if (equals<R>(a, 0) && equals<R>(b, 0)) return l2.a;
return l2.a + (l2.b - l2.a) * b / a;
}
}
#line 2 "src/real-geometry/utility/io-set.hpp"
#include <iomanip>
namespace geometry {
class IoSetup {
using u32 = unsigned int;
void set(std::ostream &os, u32 precision) {
os << std::fixed << std::setprecision(precision);
}
public:
IoSetup(u32 precision = 15) {
std::cin.tie(0);
std::ios::sync_with_stdio(0);
set(std::cout, precision);
set(std::cerr, precision);
}
} iosetup;
}
#line 7 "test/aoj/cgl/2_C.test.cpp"
#line 9 "test/aoj/cgl/2_C.test.cpp"
int main() {
using R = long double;
int q;
std::cin >> q;
while (q--) {
geometry::line<R> l1, l2;
std::cin >> l1.a >> l1.b >> l2.a >> l2.b;
auto ans = cross_point_ll(l1, l2);
std::cout << ans.x() << " " << ans.y() << std::endl;
}
}