This documentation is automatically generated by online-judge-tools/verification-helper
// verification-helper: PROBLEM https://onlinejudge.u-aizu.ac.jp/problems/CGL_7_H
// verification-helper: ERROR 0.000001
#include "src/real-geometry/area/common-area-circle-polygon.hpp"
#include "src/real-geometry/class/point.hpp"
#include "src/real-geometry/class/circle.hpp"
#include "src/real-geometry/class/polygon.hpp"
#include "src/real-geometry/utility/io-set.hpp"
#include <iostream>
int main() {
using R = long double;
int n;
R r;
std::cin >> n >> r;
geometry::circle<R> c({0, 0}, r);
geometry::polygon<R> poly(n);
for (auto &p : poly) std::cin >> p;
std::cout << geometry::common_area_circle_polygon(c, poly) << std::endl;
}
#line 1 "test/aoj/cgl/7_H.test.cpp"
// verification-helper: PROBLEM https://onlinejudge.u-aizu.ac.jp/problems/CGL_7_H
// verification-helper: ERROR 0.000001
#line 2 "src/real-geometry/area/common-area-circle-polygon.hpp"
#line 2 "src/real-geometry/class/circle.hpp"
#line 2 "src/real-geometry/class/point.hpp"
#line 2 "src/real-geometry/class/vector.hpp"
#include <complex>
#include <iostream>
namespace geometry {
template< typename R >
class vec2d : public std::complex< R > {
using complex = std::complex< R >;
public:
using complex::complex;
vec2d(const complex &c): complex::complex(c) {}
const R x() const { return this->real(); }
const R y() const { return this->imag(); }
friend vec2d operator*(const vec2d &v, const R &k) {
return vec2d(v.x() * k, v.y() * k);
}
friend vec2d operator*(const R &k, const vec2d &v) {
return vec2d(v.x() * k, v.y() * k);
}
friend std::istream &operator>>(std::istream &is, vec2d &v) {
R x, y;
is >> x >> y;
v = vec2d(x, y);
return is;
}
};
}
#line 4 "src/real-geometry/class/point.hpp"
#include <vector>
namespace geometry {
template< typename R >
using point = vec2d<R>;
template< typename R >
using points = std::vector< point< R > >;
}
#line 4 "src/real-geometry/class/circle.hpp"
#line 6 "src/real-geometry/class/circle.hpp"
// circle
namespace geometry {
template< typename R >
class circle {
public:
point<R> o;
R r;
circle() = default;
circle(point<R> o, R r) : o(o), r(r) {}
const point<R> center() const {
return o;
}
const R radius() const {
return r;
}
};
template< typename R >
using circles = std::vector< circle<R> >;
}
#line 2 "src/real-geometry/class/polygon.hpp"
#line 4 "src/real-geometry/class/polygon.hpp"
#line 6 "src/real-geometry/class/polygon.hpp"
namespace geometry {
template< typename R >
using polygon = std::vector< point<R> >;
template< typename R >
using polygons = std::vector< polygon<R> >;
}
#line 2 "src/real-geometry/class/segment.hpp"
#line 2 "src/real-geometry/utility/equals/vector.hpp"
#line 2 "src/real-geometry/utility/equals/real-number.hpp"
#line 2 "src/real-geometry/utility/sign.hpp"
#line 2 "src/real-geometry/common/const/eps.hpp"
#line 2 "src/real-geometry/common/float-alias.hpp"
namespace geometry {
using f80 = long double;
using f64 = double;
}
#line 4 "src/real-geometry/common/const/eps.hpp"
namespace geometry {
inline static f80 &eps() {
static f80 EPS = 1e-10;
return EPS;
}
void set_eps(f80 EPS) {
eps() = EPS;
}
}
#line 2 "src/real-geometry/numbers/sign.hpp"
#line 2 "src/real-geometry/common/int-alias.hpp"
namespace geometry {
using i32 = int;
using i64 = long long;
}
#line 4 "src/real-geometry/numbers/sign.hpp"
namespace geometry::number::sign {
constexpr i32 PLUS = +1;
constexpr i32 ZERO = 0;
constexpr i32 MINUS = -1;
}
#line 5 "src/real-geometry/utility/sign.hpp"
namespace geometry {
using namespace geometry::number::sign;
template< typename R >
inline int sign(R r) {
if (r < -eps()) return MINUS;
if (r > +eps()) return PLUS;
return ZERO;
}
}
#line 4 "src/real-geometry/utility/equals/real-number.hpp"
namespace geometry {
template< typename R >
bool equals(R a, R b) {
return sign(a - b) == 0;
}
}
#line 5 "src/real-geometry/utility/equals/vector.hpp"
namespace geometry {
template< typename R >
bool equals(const vec2d<R> &a, const vec2d<R> &b) {
return equals(a.x(), b.x()) and equals(a.y(), b.y());
}
}
#line 5 "src/real-geometry/class/segment.hpp"
#include <cassert>
#line 8 "src/real-geometry/class/segment.hpp"
namespace geometry {
template< typename R >
class segment {
public:
point<R> a, b;
segment() = default;
segment(point<R> a, point<R> b) : a(a), b(b) {
assert(not equals(a, b));
}
};
template< typename R >
using segments = std::vector< segment<R> >;
}
#line 2 "src/real-geometry/common/size-alias.hpp"
#include <cstddef>
namespace geometry {
using isize = std::ptrdiff_t;
using usize = std::size_t;
}
#line 2 "src/real-geometry/cross-point/cross-point-cl.hpp"
#line 2 "src/real-geometry/class/line.hpp"
#line 5 "src/real-geometry/class/line.hpp"
#line 8 "src/real-geometry/class/line.hpp"
namespace geometry {
template< typename R >
class line {
using P = point<R>;
public:
P a, b;
line() = default;
line(P a, P b) : a(a), b(b) {
assert(not equals(a, b));
}
};
template< typename R >
using lines = std::vector< line<R> >;
}
#line 2 "src/real-geometry/mapping/projection.hpp"
#line 2 "src/real-geometry/operation/inner-product.hpp"
#line 4 "src/real-geometry/operation/inner-product.hpp"
namespace geometry {
template< typename R >
R inner_product(const vec2d<R> &a, const vec2d<R> &b) {
return a.x() * b.x() + a.y() * b.y();
}
}
#line 6 "src/real-geometry/mapping/projection.hpp"
#line 8 "src/real-geometry/mapping/projection.hpp"
namespace geometry {
template< typename R >
point<R> projection(const line<R> &l, const point<R> &p) {
R t = inner_product<R>(p - l.a, l.a - l.b) / std::norm(l.a - l.b);
return l.a + (l.a - l.b) * t;
}
}
#line 7 "src/real-geometry/cross-point/cross-point-cl.hpp"
#include <cmath>
#line 10 "src/real-geometry/cross-point/cross-point-cl.hpp"
namespace geometry {
template< typename R >
points<R> cross_point_cl(const circle<R> &c, const line<R> &l) {
point<R> pr = projection(l, c.center());
R d = std::norm(c.radius()) - std::norm(pr - c.center());
if (sign(d) == -1) {
return {};
}
if (sign(d) == 0) {
return {pr};
}
point<R> e = (l.b - l.a) / std::abs(l.b - l.a);
R k = std::sqrt(d);
return {pr + e * k, pr - e * k};
}
}
#line 2 "src/real-geometry/distance/distance-sp.hpp"
#line 2 "src/real-geometry/operation/ccw.hpp"
#line 2 "src/real-geometry/numbers/ccw.hpp"
namespace geometry::number::ccw {
constexpr int COUNTER_CLOCKWISE = +1;
constexpr int CLOCKWISE = -1;
constexpr int ONLINE_BACK = +2; // c-a-b
constexpr int ONLINE_FRONT = -2; // a-b-c
constexpr int ON_SEGMENT = 0; // a-c-b
}
#line 2 "src/real-geometry/operation/cross-product.hpp"
#line 4 "src/real-geometry/operation/cross-product.hpp"
namespace geometry {
template< typename R >
R cross_product(const vec2d<R> &a, const vec2d<R> &b) {
return a.x() * b.y() - a.y() * b.x();
}
}
#line 8 "src/real-geometry/operation/ccw.hpp"
namespace geometry {
using namespace geometry::number::ccw;
template< typename R >
int ccw(const point<R> &a, point<R> b, point<R> c) {
b = b - a, c = c - a;
if (sign(cross_product(b, c)) == +1) return COUNTER_CLOCKWISE;
if (sign(cross_product(b, c)) == -1) return CLOCKWISE;
if (sign(inner_product(b, c)) == -1) return ONLINE_BACK;
if (std::norm(b) < std::norm(c)) return ONLINE_FRONT;
return ON_SEGMENT;
}
}
#line 7 "src/real-geometry/distance/distance-sp.hpp"
#line 9 "src/real-geometry/distance/distance-sp.hpp"
#include <algorithm>
namespace geometry {
template< typename R >
R distance_sp(const segment<R> &s, const point<R> &p) {
point<R> pr = projection({s.a, s.b}, p);
if (ccw(s.a, s.b, pr) == 0) return std::abs(pr - p);
return std::min(std::abs(s.a - p), std::abs(s.b - p));
}
}
#line 2 "src/real-geometry/utility/polygon-to-segments.hpp"
#line 2 "src/real-geometry/utility/next-idx.hpp"
#line 4 "src/real-geometry/utility/next-idx.hpp"
namespace geometry {
inline usize next_idx(usize idx, usize size) {
return idx + 1 == size ? 0 : idx + 1;
}
}
#line 7 "src/real-geometry/utility/polygon-to-segments.hpp"
namespace geometry {
template< typename R >
segments<R> polygon_to_segments(const polygon<R> &poly) {
usize n = poly.size();
segments<R> segs(n);
for (usize i = 0; i < n; i++) {
segs[i] = segment<R>(poly[i], poly[next_idx(i, n)]);
}
return segs;
}
}
#line 14 "src/real-geometry/area/common-area-circle-polygon.hpp"
#line 18 "src/real-geometry/area/common-area-circle-polygon.hpp"
namespace geometry::internal {
template< typename R >
R impl_common_area_ca_cp(const circle<R> &c, const segment<R> &s) {
point<R> va = c.o - s.a, vb = c.o - s.b;
R f = cross_product(va, vb), res = 0;
if (sign(f) == 0) return res;
if (sign(std::max(std::abs(va), std::abs(vb)) - c.r) <= 0) return f;
point<R> d(inner_product(va, vb), cross_product(va, vb));
if (sign(distance_sp(s, c.o) - c.r) >= 0) {
return std::norm(c.r) * std::atan2(d.y(), d.x());
}
points<R> ps = cross_point_cl(c, {s.a, s.b});
if (ps.empty()) return res;
if (ps.size() == 2 and sign(inner_product<R>(ps[1] - ps[0], s.a - ps[0])) >= 0) {
std::swap(ps[0], ps[1]);
}
ps.emplace(ps.begin(), s.a);
ps.emplace_back(s.b);
for (usize i = 1; i < ps.size(); i++) {
if (equals(ps[i - 1], ps[i])) continue;
res += impl_common_area_ca_cp(c, {ps[i - 1], ps[i]});
}
return res;
}
}
namespace geometry {
template< typename R >
R common_area_circle_polygon(const circle<R> &c, const polygon<R> &p) {
usize n = p.size();
if (n < 3) return 0;
auto segs = polygon_to_segments(p);
R res = 0;
for (auto &seg: segs) {
res += internal::impl_common_area_ca_cp(c, seg);
}
return res / 2;
}
}
#line 2 "src/real-geometry/utility/io-set.hpp"
#include <iomanip>
namespace geometry {
class IoSetup {
using u32 = unsigned int;
void set(std::ostream &os, u32 precision) {
os << std::fixed << std::setprecision(precision);
}
public:
IoSetup(u32 precision = 15) {
std::cin.tie(0);
std::ios::sync_with_stdio(0);
set(std::cout, precision);
set(std::cerr, precision);
}
} iosetup;
}
#line 9 "test/aoj/cgl/7_H.test.cpp"
#line 11 "test/aoj/cgl/7_H.test.cpp"
int main() {
using R = long double;
int n;
R r;
std::cin >> n >> r;
geometry::circle<R> c({0, 0}, r);
geometry::polygon<R> poly(n);
for (auto &p : poly) std::cin >> p;
std::cout << geometry::common_area_circle_polygon(c, poly) << std::endl;
}