This documentation is automatically generated by online-judge-tools/verification-helper
#include "src/math/modular-arithmetic/small-mod-combination.hpp"
#pragma once
#include "src/math/modular-arithmetic/modular-combinatorics.hpp"
namespace luz {
template < typename modint >
class SmallModCombination {
static constexpr auto mod = modint::get_mod();
Combinatorics< modint > mc;
public:
SmallModCombination(): mc(mod - 1) {}
modint combination(isize n, isize r) {
if (r < 0 or n < r) return 0;
modint result(1);
while (n) {
result *= mc.combination(n % mod, r % mod);
n /= mod;
r /= mod;
}
return result;
}
modint C(isize n, isize r) {
return combination(n, r);
}
};
} // namespace luz
#line 2 "src/math/modular-arithmetic/small-mod-combination.hpp"
#line 2 "src/math/modular-arithmetic/modular-combinatorics.hpp"
#line 2 "src/cpp-template/header/size-alias.hpp"
#include <cstddef>
namespace luz {
using isize = std::ptrdiff_t;
using usize = std::size_t;
}
#line 4 "src/math/modular-arithmetic/modular-combinatorics.hpp"
#include <vector>
namespace luz {
template < typename mint >
class Combinatorics {
static usize bound;
static std::vector< mint > fact, finv, inv;
static void expand(usize n) {
n += 1;
if (fact.size() >= n) return;
if (bound == 0) bound = 1;
fact.resize(n, mint(1));
finv.resize(n, mint(1));
inv.resize(n, mint(1));
for (usize i = bound; i < n; i++) {
fact[i] = fact[i - 1] * i;
}
finv.back() = mint(1) / fact.back();
for (usize i = n - 1; i >= bound; i--) {
finv[i - 1] = finv[i] * i;
}
for (usize i = bound; i < n; i++) {
inv[i] = finv[i] * fact[i - 1];
}
bound = n;
}
public:
explicit Combinatorics(usize n = 0) {
expand(n);
}
static mint factorial(usize n) {
expand(n);
return fact[n];
}
static mint factorial_inverse(usize n) {
expand(n);
return finv[n];
}
static mint inverse(usize n) {
expand(n);
return inv[n];
}
static mint permutation(isize n, isize r) {
if (r < 0 or n < r) return 0;
expand(n);
return fact[n] * finv[n - r];
}
static mint combination(isize n, isize r) {
if (r < 0 or n < r) return 0;
expand(n);
return fact[n] * finv[r] * finv[n - r];
}
static mint combination_with_repetitions(isize n, isize r) {
if (n < 0 or r < 0) return 0;
return (r ? combination(n + r - 1, r) : 1);
}
static mint P(isize n, isize r) {
return permutation(n, r);
}
static mint C(isize n, isize r) {
return combination(n, r);
}
static mint H(isize n, isize r) {
return combination_with_repetitions(n, r);
}
};
template < typename mint >
usize Combinatorics< mint >::bound = 0;
template < typename mint >
std::vector< mint > Combinatorics< mint >::fact =
std::vector< mint >();
template < typename mint >
std::vector< mint > Combinatorics< mint >::finv =
std::vector< mint >();
template < typename mint >
std::vector< mint > Combinatorics< mint >::inv =
std::vector< mint >();
} // namespace luz
#line 4 "src/math/modular-arithmetic/small-mod-combination.hpp"
namespace luz {
template < typename modint >
class SmallModCombination {
static constexpr auto mod = modint::get_mod();
Combinatorics< modint > mc;
public:
SmallModCombination(): mc(mod - 1) {}
modint combination(isize n, isize r) {
if (r < 0 or n < r) return 0;
modint result(1);
while (n) {
result *= mc.combination(n % mod, r % mod);
n /= mod;
r /= mod;
}
return result;
}
modint C(isize n, isize r) {
return combination(n, r);
}
};
} // namespace luz