This documentation is automatically generated by online-judge-tools/verification-helper
#include "src/real-geometry/circle-lib/circumscribed-circle.hpp"
#pragma once
#include "src/real-geometry/class/circle.hpp"
#include "src/real-geometry/class/point.hpp"
#include "src/real-geometry/operation/cross-product.hpp"
namespace geometry {
template< typename R >
circle<R> circumscribed_circle(const point<R> &a, const point<R> &b, const point<R> &c) {
R A = std::norm(b - c), B = std::norm(c - a), C = std::norm(a - b);
R S = std::norm(cross_product<R>(b - a, c - a));
R T = A + B + C;
point<R> o{(A*(T - 2*A) * a + B*(T - 2*B) * b + C*(T - 2*C) * c) / (4 * S)};
return circle(o, std::abs(o - a));
}
}
#line 2 "src/real-geometry/circle-lib/circumscribed-circle.hpp"
#line 2 "src/real-geometry/class/circle.hpp"
#line 2 "src/real-geometry/class/point.hpp"
#line 2 "src/real-geometry/class/vector.hpp"
#include <complex>
#include <iostream>
namespace geometry {
template< typename R >
class vec2d : public std::complex< R > {
using complex = std::complex< R >;
public:
using complex::complex;
vec2d(const complex &c): complex::complex(c) {}
const R x() const { return this->real(); }
const R y() const { return this->imag(); }
friend vec2d operator*(const vec2d &v, const R &k) {
return vec2d(v.x() * k, v.y() * k);
}
friend vec2d operator*(const R &k, const vec2d &v) {
return vec2d(v.x() * k, v.y() * k);
}
friend std::istream &operator>>(std::istream &is, vec2d &v) {
R x, y;
is >> x >> y;
v = vec2d(x, y);
return is;
}
};
}
#line 4 "src/real-geometry/class/point.hpp"
#include <vector>
namespace geometry {
template< typename R >
using point = vec2d<R>;
template< typename R >
using points = std::vector< point< R > >;
}
#line 4 "src/real-geometry/class/circle.hpp"
#line 6 "src/real-geometry/class/circle.hpp"
// circle
namespace geometry {
template< typename R >
class circle {
public:
point<R> o;
R r;
circle() = default;
circle(point<R> o, R r) : o(o), r(r) {}
const point<R> center() const {
return o;
}
const R radius() const {
return r;
}
};
template< typename R >
using circles = std::vector< circle<R> >;
}
#line 2 "src/real-geometry/operation/cross-product.hpp"
#line 4 "src/real-geometry/operation/cross-product.hpp"
namespace geometry {
template< typename R >
R cross_product(const vec2d<R> &a, const vec2d<R> &b) {
return a.x() * b.y() - a.y() * b.x();
}
}
#line 6 "src/real-geometry/circle-lib/circumscribed-circle.hpp"
namespace geometry {
template< typename R >
circle<R> circumscribed_circle(const point<R> &a, const point<R> &b, const point<R> &c) {
R A = std::norm(b - c), B = std::norm(c - a), C = std::norm(a - b);
R S = std::norm(cross_product<R>(b - a, c - a));
R T = A + B + C;
point<R> o{(A*(T - 2*A) * a + B*(T - 2*B) * b + C*(T - 2*C) * c) / (4 * S)};
return circle(o, std::abs(o - a));
}
}