This documentation is automatically generated by online-judge-tools/verification-helper
// verification-helper: PROBLEM https://onlinejudge.u-aizu.ac.jp/problems/3034
// verification-helper: ERROR 1e-3
#include "src/real-geometry/class/point.hpp"
#include "src/real-geometry/point-cloud/minimum-covering-circle.hpp"
#include "src/real-geometry/utility/io-set.hpp"
#include <iostream>
using namespace geometry;
int main() {
using R = long double;
IoSetup(20);
int n, m;
std::cin >> n >> m;
points<R> pts(n);
for (auto &p : pts) std::cin >> p;
std::vector< R > min_cov(1 << n, 1e10);
for (int bit = 0; bit < (1 << n); bit++) {
points<R> npts;
for (int i = 0; i < n; i++) {
if (not ((1 << i) & bit)) continue;
npts.emplace_back(pts[i]);
}
min_cov[bit] = minimum_covering_circle(npts, 133333333).r;
}
auto dp = std::vector(m + 1, std::vector(1 << n, R(1e10)));
dp[0][0] = 0;
for (int s = 0; s < m; s++) {
for (int bit = 0; bit < (1 << n); bit++) {
int msk = ((1 << n) - 1) - bit;
for (int sub = msk; ; sub = (sub - 1) & msk) {
dp[s + 1][bit | sub] = std::min(dp[s + 1][bit | sub], std::max(dp[s][bit], min_cov[sub]));
if (sub == 0) break;
}
}
}
std::cout << dp[m][(1 << n) - 1] << std::endl;
}
#line 1 "test/aoj/icpc/3034.test.cpp"
// verification-helper: PROBLEM https://onlinejudge.u-aizu.ac.jp/problems/3034
// verification-helper: ERROR 1e-3
#line 2 "src/real-geometry/class/point.hpp"
#line 2 "src/real-geometry/class/vector.hpp"
#include <complex>
#include <iostream>
namespace geometry {
template< typename R >
class vec2d : public std::complex< R > {
using complex = std::complex< R >;
public:
using complex::complex;
vec2d(const complex &c): complex::complex(c) {}
const R x() const { return this->real(); }
const R y() const { return this->imag(); }
friend vec2d operator*(const vec2d &v, const R &k) {
return vec2d(v.x() * k, v.y() * k);
}
friend vec2d operator*(const R &k, const vec2d &v) {
return vec2d(v.x() * k, v.y() * k);
}
friend std::istream &operator>>(std::istream &is, vec2d &v) {
R x, y;
is >> x >> y;
v = vec2d(x, y);
return is;
}
};
}
#line 4 "src/real-geometry/class/point.hpp"
#include <vector>
namespace geometry {
template< typename R >
using point = vec2d<R>;
template< typename R >
using points = std::vector< point< R > >;
}
#line 2 "src/real-geometry/point-cloud/minimum-covering-circle.hpp"
#line 2 "src/real-geometry/circle-lib/circumscribed-circle.hpp"
#line 2 "src/real-geometry/class/circle.hpp"
#line 4 "src/real-geometry/class/circle.hpp"
#line 6 "src/real-geometry/class/circle.hpp"
// circle
namespace geometry {
template< typename R >
class circle {
public:
point<R> o;
R r;
circle() = default;
circle(point<R> o, R r) : o(o), r(r) {}
const point<R> center() const {
return o;
}
const R radius() const {
return r;
}
};
template< typename R >
using circles = std::vector< circle<R> >;
}
#line 2 "src/real-geometry/operation/cross-product.hpp"
#line 4 "src/real-geometry/operation/cross-product.hpp"
namespace geometry {
template< typename R >
R cross_product(const vec2d<R> &a, const vec2d<R> &b) {
return a.x() * b.y() - a.y() * b.x();
}
}
#line 6 "src/real-geometry/circle-lib/circumscribed-circle.hpp"
namespace geometry {
template< typename R >
circle<R> circumscribed_circle(const point<R> &a, const point<R> &b, const point<R> &c) {
R A = std::norm(b - c), B = std::norm(c - a), C = std::norm(a - b);
R S = std::norm(cross_product<R>(b - a, c - a));
R T = A + B + C;
point<R> o{(A*(T - 2*A) * a + B*(T - 2*B) * b + C*(T - 2*C) * c) / (4 * S)};
return circle(o, std::abs(o - a));
}
}
#line 2 "src/real-geometry/position/in-circle.hpp"
#line 2 "src/real-geometry/utility/sign.hpp"
#line 2 "src/real-geometry/common/const/eps.hpp"
#line 2 "src/real-geometry/common/float-alias.hpp"
namespace geometry {
using f80 = long double;
using f64 = double;
}
#line 4 "src/real-geometry/common/const/eps.hpp"
namespace geometry {
inline static f80 &eps() {
static f80 EPS = 1e-10;
return EPS;
}
void set_eps(f80 EPS) {
eps() = EPS;
}
}
#line 2 "src/real-geometry/numbers/sign.hpp"
#line 2 "src/real-geometry/common/int-alias.hpp"
namespace geometry {
using i32 = int;
using i64 = long long;
}
#line 4 "src/real-geometry/numbers/sign.hpp"
namespace geometry::number::sign {
constexpr i32 PLUS = +1;
constexpr i32 ZERO = 0;
constexpr i32 MINUS = -1;
}
#line 5 "src/real-geometry/utility/sign.hpp"
namespace geometry {
using namespace geometry::number::sign;
template< typename R >
inline int sign(R r) {
if (r < -eps()) return MINUS;
if (r > +eps()) return PLUS;
return ZERO;
}
}
#line 6 "src/real-geometry/position/in-circle.hpp"
#line 8 "src/real-geometry/position/in-circle.hpp"
namespace geometry {
template< typename R >
bool in_circle(const circle<R> &c, const point<R> &p) {
return sign(std::abs(c.o - p) - c.r) == -1;
}
}
#line 7 "src/real-geometry/point-cloud/minimum-covering-circle.hpp"
#include <random>
#include <algorithm>
namespace geometry {
template< typename R >
circle<R> minimum_covering_circle(points<R> pts, unsigned int seed) {
auto make_circle = [](const point<R> &a, const point<R> &b) {
return circle<R>(point<R>(a + b) * 0.5, abs(a - b) * 0.5);
};
int n = pts.size();
if (n == 1) return circle<R>(pts[0], 0);
std::mt19937 engine(seed);
std::shuffle(pts.begin(), pts.end(), engine);
circle<R> res(point<R>(), -1);
for (int i = 0; i < n; i++) {
if (in_circle(res, pts[i])) continue;
res = circle<R>(pts[i], 0);
for (int j = 0; j < i; j++) {
if (in_circle(res, pts[j])) continue;
res = make_circle(pts[i], pts[j]);
for (int k = 0; k < j; k++) {
if (in_circle(res, pts[k])) continue;
res = circumscribed_circle(pts[i], pts[j], pts[k]);
}
}
}
return res;
}
}
#line 2 "src/real-geometry/utility/io-set.hpp"
#include <iomanip>
namespace geometry {
class IoSetup {
using u32 = unsigned int;
void set(std::ostream &os, u32 precision) {
os << std::fixed << std::setprecision(precision);
}
public:
IoSetup(u32 precision = 15) {
std::cin.tie(0);
std::ios::sync_with_stdio(0);
set(std::cout, precision);
set(std::cerr, precision);
}
} iosetup;
}
#line 7 "test/aoj/icpc/3034.test.cpp"
#line 9 "test/aoj/icpc/3034.test.cpp"
using namespace geometry;
int main() {
using R = long double;
IoSetup(20);
int n, m;
std::cin >> n >> m;
points<R> pts(n);
for (auto &p : pts) std::cin >> p;
std::vector< R > min_cov(1 << n, 1e10);
for (int bit = 0; bit < (1 << n); bit++) {
points<R> npts;
for (int i = 0; i < n; i++) {
if (not ((1 << i) & bit)) continue;
npts.emplace_back(pts[i]);
}
min_cov[bit] = minimum_covering_circle(npts, 133333333).r;
}
auto dp = std::vector(m + 1, std::vector(1 << n, R(1e10)));
dp[0][0] = 0;
for (int s = 0; s < m; s++) {
for (int bit = 0; bit < (1 << n); bit++) {
int msk = ((1 << n) - 1) - bit;
for (int sub = msk; ; sub = (sub - 1) & msk) {
dp[s + 1][bit | sub] = std::min(dp[s + 1][bit | sub], std::max(dp[s][bit], min_cov[sub]));
if (sub == 0) break;
}
}
}
std::cout << dp[m][(1 << n) - 1] << std::endl;
}