This documentation is automatically generated by online-judge-tools/verification-helper
#include "src/real-geometry/position/point-polygon-positional-relationships.hpp"
#pragma once
#include "src/real-geometry/class/point.hpp"
#include "src/real-geometry/class/polygon.hpp"
#include "src/real-geometry/numbers/posision-of-point-polygon.hpp"
#include "src/real-geometry/operation/cross-product.hpp"
#include "src/real-geometry/operation/inner-product.hpp"
#include "src/real-geometry/common/size-alias.hpp"
#include "src/real-geometry/utility/next-idx.hpp"
#include "src/real-geometry/utility/sign.hpp"
#include <algorithm>
namespace geometry {
// O(N)
template< typename R >
int point_polygon_positional_relationships(const point<R> &p, const polygon<R> &poly) {
using namespace number::point_polygon_positional_relationships;
usize n = poly.size();
bool in = false;
for (usize i = 0; i < n; i++) {
usize j = next_idx(i, n);
point<R> a = poly[i] - p, b = poly[j] - p;
if (a.y() > b.y()) std::swap(a, b);
if (a.y() <= 0 and 0 < b.y() and cross_product(a, b) < 0) {
in = not in;
}
if (sign(cross_product(a, b)) == 0 and sign(inner_product(a, b)) <= 0) {
return ON_EDGE;
}
}
return in ? IN : OUT;
}
}
#line 2 "src/real-geometry/position/point-polygon-positional-relationships.hpp"
#line 2 "src/real-geometry/class/point.hpp"
#line 2 "src/real-geometry/class/vector.hpp"
#include <complex>
#include <iostream>
namespace geometry {
template< typename R >
class vec2d : public std::complex< R > {
using complex = std::complex< R >;
public:
using complex::complex;
vec2d(const complex &c): complex::complex(c) {}
const R x() const { return this->real(); }
const R y() const { return this->imag(); }
friend vec2d operator*(const vec2d &v, const R &k) {
return vec2d(v.x() * k, v.y() * k);
}
friend vec2d operator*(const R &k, const vec2d &v) {
return vec2d(v.x() * k, v.y() * k);
}
friend std::istream &operator>>(std::istream &is, vec2d &v) {
R x, y;
is >> x >> y;
v = vec2d(x, y);
return is;
}
};
}
#line 4 "src/real-geometry/class/point.hpp"
#include <vector>
namespace geometry {
template< typename R >
using point = vec2d<R>;
template< typename R >
using points = std::vector< point< R > >;
}
#line 2 "src/real-geometry/class/polygon.hpp"
#line 4 "src/real-geometry/class/polygon.hpp"
#line 6 "src/real-geometry/class/polygon.hpp"
namespace geometry {
template< typename R >
using polygon = std::vector< point<R> >;
template< typename R >
using polygons = std::vector< polygon<R> >;
}
#line 2 "src/real-geometry/numbers/posision-of-point-polygon.hpp"
namespace geometry::number::point_polygon_positional_relationships {
constexpr int OUT = 0;
constexpr int ON_EDGE = 1;
constexpr int IN = 2;
}
#line 2 "src/real-geometry/operation/cross-product.hpp"
#line 4 "src/real-geometry/operation/cross-product.hpp"
namespace geometry {
template< typename R >
R cross_product(const vec2d<R> &a, const vec2d<R> &b) {
return a.x() * b.y() - a.y() * b.x();
}
}
#line 2 "src/real-geometry/operation/inner-product.hpp"
#line 4 "src/real-geometry/operation/inner-product.hpp"
namespace geometry {
template< typename R >
R inner_product(const vec2d<R> &a, const vec2d<R> &b) {
return a.x() * b.x() + a.y() * b.y();
}
}
#line 2 "src/real-geometry/common/size-alias.hpp"
#include <cstddef>
namespace geometry {
using isize = std::ptrdiff_t;
using usize = std::size_t;
}
#line 2 "src/real-geometry/utility/next-idx.hpp"
#line 4 "src/real-geometry/utility/next-idx.hpp"
namespace geometry {
inline usize next_idx(usize idx, usize size) {
return idx + 1 == size ? 0 : idx + 1;
}
}
#line 2 "src/real-geometry/utility/sign.hpp"
#line 2 "src/real-geometry/common/const/eps.hpp"
#line 2 "src/real-geometry/common/float-alias.hpp"
namespace geometry {
using f80 = long double;
using f64 = double;
}
#line 4 "src/real-geometry/common/const/eps.hpp"
namespace geometry {
inline static f80 &eps() {
static f80 EPS = 1e-10;
return EPS;
}
void set_eps(f80 EPS) {
eps() = EPS;
}
}
#line 2 "src/real-geometry/numbers/sign.hpp"
#line 2 "src/real-geometry/common/int-alias.hpp"
namespace geometry {
using i32 = int;
using i64 = long long;
}
#line 4 "src/real-geometry/numbers/sign.hpp"
namespace geometry::number::sign {
constexpr i32 PLUS = +1;
constexpr i32 ZERO = 0;
constexpr i32 MINUS = -1;
}
#line 5 "src/real-geometry/utility/sign.hpp"
namespace geometry {
using namespace geometry::number::sign;
template< typename R >
inline int sign(R r) {
if (r < -eps()) return MINUS;
if (r > +eps()) return PLUS;
return ZERO;
}
}
#line 11 "src/real-geometry/position/point-polygon-positional-relationships.hpp"
#include <algorithm>
namespace geometry {
// O(N)
template< typename R >
int point_polygon_positional_relationships(const point<R> &p, const polygon<R> &poly) {
using namespace number::point_polygon_positional_relationships;
usize n = poly.size();
bool in = false;
for (usize i = 0; i < n; i++) {
usize j = next_idx(i, n);
point<R> a = poly[i] - p, b = poly[j] - p;
if (a.y() > b.y()) std::swap(a, b);
if (a.y() <= 0 and 0 < b.y() and cross_product(a, b) < 0) {
in = not in;
}
if (sign(cross_product(a, b)) == 0 and sign(inner_product(a, b)) <= 0) {
return ON_EDGE;
}
}
return in ? IN : OUT;
}
}